
THEi SMALL PARAMETER METHOD FOR DETERMININQ 

THEi M~ION OF THE ~SCOUS INCOM~SSI~ 

FLUID IN A SUPPORT EEARINCS 

(HETOD BIAxmo Pi D&IA 0~~ IJWIZKENIIA 

VuploI ZIiIDKomI v 0PoRNox mKmIIp1sIIcE) 

PM&! vo1.30, L 4, 1966, pp. 763-767 

G.I.BODIAKOV and L.A.~~SI~ 

(Leningrad) 

(Received May 14, 1965) 

The steady-state flow of a viscous Incompressible fluid between two cylinders 
Is considered. One of the cylinders is circular and rotates about its axis 
at the constant angular velocity UJ , while the other remains stationary. 
The latter cylinder is close in shape to some circular cylinder coaxial with 
the first. 

1. Let us introduce the cylindrical coordinate system (r,@, a,), directing 
the z,-axis along the axis of the rotating Cylinder. We write the equations 
of motion of the fluid between the cylinders in dimensionless form, taking 
as our length scale the characteristic dimension of the outer cylinder and 
as our time scale the quantity l/w , According to [l], the equations can 
then be written as 

R(VxV)xV=-VN-vxxvxv), vv=o, H=p+RVV)2 (l.f) 

Here R is the Reynolds number, V fs a dimensionless velocity vector, 
V is a Hamiltonian, and p is the hydrodynamic pressure. 

The stationary c Under 
tion r = a + ca*(u 7 

in the chosen coordinate system is given by Equa- 
, where F and a are constants. Furthermore, if the 

outer cylinder is stationar 
tionary, then a = rl(rl< 1 3'. 

then a = 1 ; if the Inner cylinder is sta- 

The boundary conditions for Equation (1.1) are as follows: 

if it is the Inner cylinder which rotates, then 

V=E for r== F,, v=o f= P = i + EQI (6) 

if it is the outer cylinder which rotates, then 

v=o for r = r, $-E rp (@), V=E rorr=i 

f*.z) 

(1.3) 
Here E is a vector with the components E,= 0, E,= 1. 

In addition to (1.2) and (1.3), we shall also make use of the periodicity 
of the hydrodynamic pressure with respect to 6. 

For smsll c and I@(@)l<const the space occupied by the fluid Is not 
much different from a circular ring. We shall assume that all of the condi- 
tions set forth in [2] apply to the curves bounding this space. Let us map 
conformally the space occupied by the fluid onto a circular ring. Themam- 
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function canbewrltten as 5 = (Xi' = I -!- e@k(Z, a), where z I r.~l'). The radius 
of the Inner circle In conformal mapping is fixed at p = 1 , so that the 
radius P=8 of the outer circle Is determined by the data of the problem. 

Let us rewrite Equation (1.1) and boundary conditions (1.2) and (1.3) in 
the new orthogonal coordinate system (p, cp), introducing the new functions 
V’ and P' to be determined by Formulas 

where J Is the coordinate transforming Jacobian. 

The components of the vector-function V, and the fur&ion PO are given 
by Expressions 

y=o, uO=$&-~), po -= & O.Sp~~--2~2 111 p- - 
i 

0.2sp4 

P" 1 
-+ const (1.4) 

if the inner cylinder rotates, and 

Y=:O, Vo=&(p---+-), p~=~~(0.5pz-:!Inp-~)-~const (1.3) 

if the outer cylinder rotates. 

Henceforth we shall assume that 0, (P,~)EC(')(Q), where p (P,(P) is a 
r!ng defined by the inequalities I< p <,<, 0 <CP <2n. 

After the indicated substitutions, Equation (1.1) and boundary conditions 
(1.2) of (1.3) can be rewritten as follows (the prime denoting the unknowns 
will henceforth be omitted): 

~~(V~VO)XV+(VXV)XVO+(CIXV)XV~=-V~~-~~XVXV)+~FCV)(~.~) 

QV===O, Hl=p+O0.5R (V,V+VV), v ==o for p=l, P'P 

~(V~=--RQ)s(vxVo)xvo--*vX(~xvo)-v~fsx(VxVo)-~RtD*j(VxVo)r 

x V+(v x vtx Vo] -@*Vx(VxV)-RQ*(VXV)XV- 

-~QsX(V x V), @3=-%/(i+eW 

We shall attempt to solve problem (1.6) in the form of a series in the 
small parameter E . 

v = ngl V,En, H, r= f$ H,, %e” (1.7) 
n----l 

Let us substitute the expressions from (1.7) into (1.6) and collect the 
terms containing the same powers of the parameter e . This yields the fol- 
lowing sequence of linear equations and accompanying boundary conditions: 

~[(v~vo)xV,+(V~V,)~V,f+V~~,,+'C7~~V~Vn~=fn (1.8) 

vv,=o, v,=o for p=l, P=P 

+ (V x V&x V,l--377 xtvxv,_&-vvfD~ x to x Vn_&i-x, fl.9) 

Here X,=0 rwn>l 

r,=-RQ,s(VxVo) xvo- Q3vx(vJvo)-v@3x(vxVo) 

PILet us prove the solvability of problem (1.8). We shall show firste 
that it has u"dque solution In the space of the vector-function V,EW, (Q) 
and &,EWp'( ). It will be assumed from now on that all of the operations 
In (1.8) are written in a polar coordinate system. 

Let us consider problem (1.8) for i. e 0 . We take the scalar product of 
the first vector equation of this problem and aV,/ap, and integrate over 



tt,t (1 ‘ma In - The vector-l'unctlon av,i+EWzl and is solenoidal. By 
vlr*tue of’ this ortho[:onallty of solenoldal functions (which vanish on the 
boundary 4 the dlmaln) to functions of the form VI!,,, , we arrive at the 
f'crll~~wlnr* t~~luation: 

R 
c 

avn 

b 

a’p I(0 x V,,) x vo + (D x V,) x’ V,J PdPdTS 
s, 

8V, 
acp v x (V x V,) Pd P& = 0 @iI 

It can be shown that the second integral in this equation can be trans- 
formed in the followlnc way witi) the aid of vector analysis formulas: 

Here r is the boundary of the domain 0 ,and n Is the vector of the 
normal to r . By vlrtue.of the fact that -av./acp=o on r the lnte- 
cral vanishes on the contour. 
= a(~ x v,)/acp 

It Is easy to verify that v x av:/a(p - 
. Integrating over (0 in the right-hand side of the preced- 

ine equation, we conclude that the second integral in (2.1) Is equal to zero. 
The remaining terms in (2.1) expressed in terms of projections of the velo- 
city on the directions p and (r can be written as 

where u. and u, are components of the vector V, . 

Integrating by parts and carrying out some simple manipulations, we can 
rewrite the latter equation as 

R + + $ [2T + +-%I (prQ> dp dq = 0 (2.2) 

In the case where vO is given by 
rewritten as 

Formula (1.5), Equation (2.2) can be 

~~+[&$+ &)“1 + +,2}dpdq1=0 

From the latter equation it Is 
pendent of (P . In this case the 

clear that IA, f 0 and that v, Is lnde- 
proJect;on_?n the direction cp of the 

first equation of boundary value problem (1.8) for 1.~ 0 can be written as 

(23) 

Let us now make use of the condition of periodiclty of the hydrodynamic 
pressure. The right-hand side of Equation (2.3) Is independent of rp . 
Integrating (2.3) over ~(0 5 Q < %) and making use of the periodlclty of 
p, with respect to (r , we obtain Equation 

d2v, 1 da,, v, 
dp2+7dp---0 

P2 - 

This equation and the boundary conditions for v, imply that v,e 0 . 
Hence, In the case where the outer cylinder Is the one which rotates, Equa- 
tions (1.8) have a unique solution. 

Now let us consider the case where the inner cylinder rotates. In this 
cese u0 is given by Formula (1.4) and Equation (2.2) can be rewritten as 
fellows: 
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In the latter equality we replace du,/acp In accordance with the conti- 
nuity equation by the expression -(u,+ pau,fap) , and obtain 

Hence, integrating by parts the term (+ pa)aun2/bp , we obtaln 

Let the function 
coarser Inequality 

u. Satisfy inequality (2.4). It then satisfies the 

and even more certainly the Inequality 

obtained from the latter by repleclng the right-hand side In accordance with 
the Inequality 

\ U,adPd(PdfB- 1) 
h a 

(P- P)~~~)~~P dq) 

For 
This inequazlity is valid for functions which vanish on the ring boundaries. 

B + 1 
tea! (8, L A) 

2 0 It follows from (2.5) that u-5 0 
Thus, the solution of problem (1.8) 

which Implies, 
as above, 
this case as well: In'the second case 

ii unique in 
uniqueness was successfully demon- 

strated for 6 satldfying the Inequality 8 + 1 - ga(8 - 1) 2 0 i.e. for 
fiE(i.i.84). The problem under consideration has Its principal application 
in the theory of high-speed support bearings, In which the Indicated limlt- 
ation as regards $ is always fulfilled. 

Let us rewrite problem (1.8) in operator form 

A V,,, H+ B I',, [I =f, (2.0) 

The boundary value problem 

V x (V x v,)+ OH,== f,, vv,=o, V,[r=O 

corresponds to the operator A . 
This problem is Investigated in f3], where it is shown that the operator 

A as an operator from W,” In L, has the bounded inverse A-l. The oper- 
ator F is defined by (1.8); its domain of deflnitibn is broader than that 
of the operator A . 

Multiplying (2.6) on the left by A-' we arrive at Equation 

Vn,H -+ T V,, H= f,’ P-7) 

;vr; f,’ = A-lf,, T = d-xi? i 9 a completely continuous operator from W O2 
* This follows from the fact that A-’ is bounded, while B is Eom- 

pletealy continuous C4] as an operator from Waoa 
ness of boundary value problem (1.8) implies, 

in L,. The proven unique- 
by virtue of Fkedholm's theo- 

rems, its solvability and the estimate 

II V"(IW.Z < c 11 f7z lILz (2.8) 

Making use of the properties of a norm and the Cauchy inequality, we 
obtain from (1.9) the estimate 

n---1 

Here c1 Is defined in terms of the functions @*, *a and V,. From the 
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imbedding theorems [4] and from (2.9) we have the estimate 
1.-l 

(2.10) 

where C? is a constant from the corresponding imbeddlng theorems. 
Making use of (2.10), we can write (2.8) as 

n-1 

llv, lIwtZ dc3 [iI vn_l lIw12 + 2 11 vn-k l!wdz !I Vk i1W22 f 11 Xn iiLj (2.ii) 
k=l 

(C3-C max(C1,C&, 1)) 

3. Let us rove the convergence of series (1.7) relative to the Parameter 
b. From (1.7 P we have 

II V IluTz < jj II V, lIWyn (3.1) 
n=1 

where II vn IIw*2 are related to c IIV,jlwsz(k<~~) by Expression (2.11). 

Let us consider the algebraic equation 

%x2 - x (1 - sCJ + C,s IIxl llLp = 0 (3.2) 
For E = 0 this equation has as one of Its roots x = 0 . We shall 

attempt to find the solution of Equation (3.2) which is close to zero for 
small b In the form 

x= 5 xnen (3.3) 
n=1 

Substituting (3.3) Into (3.2) and collecting terms with like powers of 
the parameter c , we obtain the recurrent relation 

n-1 

xn=+%~+ 2 x,,-kxk+II&&.Z] (3.4) 
k=l 

For IL = 1 , (2.11) and (3.4) Imply the inequality IIV1[Iw,.< x1. 

Let the inequality IIV,,,Ilwg < xm be valid for a11 m 
inequality 

n-1 

II V?l II& a3 c II v n-1 IIw2’ + z iI ‘n-k IIW.’ II Vk IlW,=] bCs [%-I + 

k=l 
is then valid for flV,,llw, 

I 

<n-l. The 

n-1 

2 x,,-kxk]=xn 
k=l 

This provts that series (3.3) maJorizes series (3.1). The radius of con- 
vergence of series (3.3) can be easily determined from (3.2). Series (3.3) 
converges for e which satisfy the inequality 
Hence, 

ZC,sll +2’%h~~r_--el<l. 
series (3.1) converges under the same conditions. 
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