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The steady-state flow of a viscous incompressible fluld between two cylirders
is considered. One of the cylinders is circular and rotates about its axis
at the constant angular veloclity w , while the other remalns stationary.
The latter cylinder 1is close in shape to some circular cylinder coaxial with
the first.

1., Let us introduce the cylindrical coordinate system (r, €, 2), directing
the z,-axis along the axis of the rotating c¢ylinder. We write the equations
of motion of the fluld between the cylinders in dimenslonless form, taking
as our length scale the characteristic dimension of the outer cylinder and
as our time scale the quantity 1/w ., According to [1], the equations can
then be written as

R(VXxV)xV=— TH— X(V X V), UV=0, H=p+RVV/2 (1.4

Here R 1s the Reynolds number, V 1is a dimenslonless velocity vector,
v is a Hamiltonlan, and P 1s the hydrodynamic pressure.

The stationary cylinder in the chosen coordinate system is glven by Equa-
tion r=¢ + ea@(v' » where e and ¢ are constants. Furthermore, if the
outer cylinder is stationary, then & =1 ; 1if the inner cylinder is sta-
tionary, then @ = ry{r,< 1) .

The boundary conditions for Equation (1.1) are as follows:
if 1t 1s the 1lnner c¢ylinder which rotates, then

V=E ftor r=ry, V=0 for r=1- D (§) (1.2)
if 1t is the outer cylinder which rotates, then
V=0 tor r=r +enr®(d), V=E for r=1 (1.3)

Here E 1is a vector with the components K, =0, Ez; = 1.

In addition to (1.2) and {1.3), we shall also make use of the perlodicity
of the hydrodynamic pressure with respect to §.

For small ¢ and |® (®){< const the space occupied by the fluild is not
much different from a circular ring. We shall assume that all of the condi-
tions set forth in [2] apply to the curves bounding this space. Let us map
conformally the space occupied by the fluld onto a circular ring. The mapping
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function van be written as § = pe'® = z -1 D, (2, &), where z = r'®. The radius

of the inner circle 1in conformal mapping 1s fixed at p = 1 , so that the
radius p = g of the outer circle is determined by the data of the problem.

Let us rewrite Equation (1.1) and boundary conditions {1.2) and {1.3) in
tr'xe new ox;thogonal coordinate system (p, o), Introducing the new functions
V/ and p’ to be determined by Formulas

dg

Ve=J"Y -V, p-=p—rpo (J~ -g;i :1-*‘8“’*(9"9))

where J 1s the coordinate transforming Jacobian.

The components of the vector-function ¥V, and the function P, are given
by Expressions

2 95

1 1 . 0.2534
Up=0, = T—@ p - - ) ey (O..Jp-—ZBz Inp— “pj"‘) -+ const  (1.4)
if the inner cylinder rotates, and

B ( 1 ) ;32 ( 0.25

== (), =g | p— — ], — 502 — © il B 1
Uy Vo BT \P P Po =0 0.5p2 — 21lnp ot ) + const (1.5)
if the outer cylinder rotates.

Henceforth we shall assume that @, (p, (p)ECm {Q), where Q (p,¢) 1s a
ring defined by the inequalitles 1 p <P, 0 << < 2n.

After the indicated substitutions, Equation (1.1) and boundary conditilons
(1.2) of {1.3) can be rewritten as follows {(the prime denoting the unknowns
will henceforth be omitted):

RV X Vo) x V4 (VX V)X Vo (VX V) x V] — TH; —  x (V x V)4 eF (V) (1.6)
YV =0, Hy=p+05R(VeV+VV), V=0 for p=1, p=8
F (V)=— R®3(V x Vg) X Vo— O3V X {V X Vp) ~ VD3 X(V X Vo) — RO [(V X ¥} x
X V = (7 X V) X Vo] —= Dp%7 X (V X V) — ROy (T x V) X V —
—~ VO X(V xV), Oz=—Dz/(1+edy)

We shall attempt to solve problem (1.6) in the form of a series in the
small parameter ¢ .

00 o0

V=S Vet H = 3 Hy e (1.7)
=1 n=1

Let us substitute the expressions from (1.7) into (1.6) and collect the

terms containing the same powers of the parameter ¢ . This ylelds the fol-
lowing sequence of linear equations and accompanying boundary conditions:

RUT X Vo)XV, A+ (7 x V) x Vo + VHy i+ V% (VX V) =f,  (18)
vV,=0, ¥ =0 for p=1, p=B
n—1

n
R
DV X V) x Vo — ROV X Vo) X ¥,y +

b= 17w,
k

(Y x Vpg) X Vol — O x (VX V) = VD x (VX V) 4%, (L9)

Here 2('nzo for n>1
Yy == — RO (7 X Vo) x Vo— @g%/ X (V % V) — VD3 x (V x Vo)

2.1et us prove the solvability of problem {(1.8). We shall show first
that 1t has un&que solution in the space of the vector-function V,& W,?(Q)
and Hy nEWyt (2). It will be assumed from now on that all of the operatlons
in (1.8) are written in a polar coordinate system.

Let us consider problem {1.B) for £,=0 , We take the scalar preoduct of
the first vector equation of this problem and 23V,/3p and integrate over
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the domatn © . The vector-runction 8V, /09EWS} and is solenoidal. By
virtue of the orthoponallty of solenoidal functions (which vanish on the
boundary of the domaln) to functions of the form v#,,, , we arrive at the
ffollowinr equation:

v av
Rg _an[(V XV )% Vo4 (V x Vo) x V_ ]pdpip+ ia—q," Vx(VxV,)pdpdg=0 (21)
9]

It can be shown that the second integral in this equation can be trans-
formed in the followling way with the aild of vector analysis formulas:

av, av ov,
g—a(PTVX(Van)pdpdcng(vx aq,)(Van)pdpderg[ Zx (U x VY, )
Q

Here I 1is the boundary of the domain (Q ,and n is the vector of the
normal to I . By virtue of the fact that - 3V,/dp = 0 on I , the inte-
gral vanlshes on the contour. It is easy to verify that v x 3V,/dq =
= 3(v X V,)/3p . Integrating over o 1in the right-hand side of the preced-
ing equation, we conclude that the second integral in (2.1) 1s equal to zero.
The remaining terms in (2.1) expressed in terms of projections of the velo-
city on the directions p and ¢ can be written as

el

where u, and v, are components of the vector V, .

dv 12 du, dv, dpv,
(56) =200 35 + 005 5} 2090 =0

Integrating by parts and carrying out some simple manipulations, we can
rewrite the latter equation as

USRI

Fm + 3 s o dp ] (pun)“} dpdp=0 2.2)
In the case where U, 1s given by Formula (1.5), Equation (2.2) can be

rewritten as
p?_i aun2 dv_\2 2
g{ p RW) +(6_q?)]+?un2}dpdcp=o
Q

From the latter equation it is clear that u, =0 and that v, is inde-

pendent of ¢ . In thls case the projection on the direction ¢ of the
first equation of boundary value problem (1.8) for £,=0 can be written as

1 0p, d, 1 dv, v,
w = T e H (23)
p 0@ P p ap P
Let us now make use of the condition of periodicity of the hydrodynamlc
pressure. The right-hand side of Equation (2.3) is independent of ¢
Integrating (2.3) over (0 = ¢ < 27) and making use of the periodicity of
D, with respect to o , we obtain Equation

Po, APy v
dp® pdp Pt
This equation and the boundary conditions for v, imply that v,= O

Hence, in the case where the outer cylinder 1s the one whilch rotates, Equa-
tions (1.8) have a unique solution.

Now let us consider the case where the inner cylinder rotates. In this
cese Uy 1s given by Formula (1.4) and Equation (2.2) can be rewritten as

fcllows: s ,
2 u 2
[ (5o (5 o=
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In the latter equality we replace v /a@ in accordance with the conti-
nuity equation by the expression - (u,+ pau /?p) , and obtain

g gt ﬁun q-eun du 2 cu 2
;{, 7 (Gg) +0t (G +ut] + @ -5 dade =22 o g
o)
Hence, integrating by parts the term (g%-- p?)3u,?/3p , we obtain

S}{@?}‘ [(6u )2+P (au ) }+Pun“ dp dg = Bﬁ-ﬁ- <B’S a2dpdp (2.%)

.

Q 2

Let the function wu, satisfy inequality (2.%). It then satisfles the
coarser inequality

f

and even more certainly the inequality

5){32:;:2 (:‘;) + pu 2+{B+1-;32(B._1)](.3mp)<ap ) }dpdq) <0 (25)

(ESE (G +ome @t 0@—0(52) | do <ol oo
2

obtained from the latter by replacing the right-hand side 1n accordance with

the inequality
Sunwpdm(@—i)i(s o (7
Q

u

) dp do

This 1nequa11ty is valid for functions which vanish on the ring boundaries.
For g +1—-p?(B—1) =0 it follows from (2.5) that wu,= O , which implies,
as above, that v,= 0 . Thus, the solution of problem (1.8) is unique in
thils case as well. In the second case, uniqueness was successfully demon-
strated for B satidfying the inequality g + 1 — 8%(g —1) 2 0, i.e. for
Be(1, 1.84). The problem under consideration has its principal application
in the theory of high-speed support bearings, in which the indicated limit-
ation as regards B 1is always fulfilled.

Let us rewrite problem (1.8) in operator form
A Vn, H+BVn, H:fn (2.6)
The boundary value problem
VX (Vx V) VH, =1, VV,=0 V,|p=0
corresponds to the operator 4 .

This problem is investigated in [ 3], where it 1s shown that the operator
A as an operator from W,° in Z, has the bounded inverse A~'. The oper-
ator B is defined by (1 8); 1its domain of definition is broader than that
of the orerator 4

Multiplying (2.6) on the left by 4~ ! we arrive at Equation
V HATV, H=f' @0

where f, = A7M,, T = A"'B is a completely continuous operator from ¥,

in L, . This follows from the fact that A~ ! 1s bounded, while £ 1s com~
pletely continuous [4] as an operator from W,°® in I, The proven unique~
ness of boundary value problem (1.8) implies, by virtue of Fredholm's theo-
rems, 1its solvability and the estimate

| Valw,: <cltaly, (2.8)

Making use of the properties of a norm and the Cauchy inequallty, we
obtain from (1.9) the estimate
Nl
N
g, <€ [ Vgl + 20 1 Vack e 19 % Vi, + Ik, ) 2.9)
k=1
Here ¢, is defined in terms of the functions &,, ¥ and V,. From the
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imbedding theorems [4#] and from (2.9) we have the estimate
7 emn]
| ( N | f O
1, < Co I Vgl + €2 |
k=1
where ¢, 15 a constant from the corresponding imbedding theorems.
Making use of (2.10), we can write (2.8) as
n—1
v Qv ; .
IVl € [ Vo b + 2 U Vi sl Vi + 2,
k=1
(03 == C max (Cl, Cr_)Cl, 1))

3. Let us prove the convergence of series (1.7) relative to the parameter
¢ . From (1.7) we have

Vialwe I Vilwe il ] 210

L] (2.14)

[e ]
1Vl s < D) I Vol 2™ (3.1)
n=1
where ||Vujy,. are related to ¢ | Vgl (k < n) by Expression (2.11).
Let us conslder the algebraic equation
Cez? — (1 — eCy) + Cyefyy, = 0 (3.2)

For ¢ = 0 this equatlon has as one of 1its roots x = O . We shall
attempt to find the solution of Equation (3.2) which is close to zero for
small ¢ 1in the form

co
xr= Z zpe" (3.3)
n=1

Substituting (3.3) into (3.2) and collecting terms with like powers of
the parameter ¢ , we obtaln the recurrent relation

n—1

20 =Cs [20y + 3] Tnopty il ] (3.4)
=1

For n =1, (2.11) and (3.%) imply the inequality 1'Vilw, < 2.

Let the inequality ||V, ”W,’< z, Dbe valid for all m <n — 1 . The

in alit
equ y 1 1

Valws <G [ Vasbgs+ 3 1 Vi sl Vilwia | <Cs[my + 3] 20y | =2
k=1 k=1
is then valid for ﬂvn"W2
2

This proves that series (3.3) majorizes series (3.1). The radius of con-
vergence of series (3.3) can be easily determined from (3.2). Seriles (3.3)
converges for ¢ which satisfy the inequality 20|l + 2G|y, — 28| < 1.
Hence, series (3.1) converges under the same conditions. *
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